发表在 NOIP 10-10 11:26:58
丽江河边有 n 家很有特色的客栈,客栈按照其位置顺序从 1 到n 编号。每家客栈都按照某一种色调进行装饰(总共 k 种,用整数 0 ~ k-1 表示),且每家客栈都设有一家咖啡店,每家咖啡店均有各自的最低消费。
两位游客一起去丽江旅游,他们喜欢相同的色调,又想尝试两个不同的客栈,因此决定分别住在色调相同的两家客栈中。晚上,他们打算选择一家咖啡店喝咖啡,要求咖啡店位于两人住的两家客栈之间(包括他们住的客栈),且咖啡店的最低消费不超过 p。
他们想知道总共有多少种选择住宿的方案,保证晚上可以找到一家最低消费不超过 p元的咖啡店小聚。
输入共n+1行。
第一行三个整数 n,k,p,每两个整数之间用一个空格隔开,分别表示客栈的个数,色调的数目和能接受的最低消费的最高值;
接下来的 n行,第 i+1 行两个整数,之间用一个空格隔开,分别表示 i 号客栈的装饰色调和 i 号客栈的咖啡店的最低消费。
输出只有一行,一个整数,表示可选的住宿方案的总数。
5 2 3 0 5 1 3 0 2 1 4 1 5
3
输入输出样例说明:
客栈编号 1 2 3 4 5
色调 0 1 0 1 1
最低消费 5 3 2 4 5
2 人要住同样色调的客栈,所有可选的住宿方案包括:住客栈①③,②④,②⑤,④⑤,
但是若选择住 4、5 号客栈的话,4、5 号客栈之间的咖啡店的最低消费是 4,而两人能承受
的最低消费是 3 元,所以不满足要求。因此只有前 3 种方案可选。
数据范围:
30% n<=100
50% n<=1000
100% 2<=n<=200000, 0<k<=50, 0<=p<=100, 0<=最低消费<=100